Sunday, 12 February 2017

GeoMapping_STATES


India's Map Using Tableau


Plots Using Tableau


Friday, 3 February 2017

Plotting State,District,Taluk level maps Using R

Working with R, we will need two R packages :

# Load required libraries
library(sp)
library(RColorBrewer)


# load level 1 india data downloaded from http://gadm.org/country
load("IND_adm1.RData")
ind1=readRDS("IND_adm1.rds")
spplot(ind1, "NAME_1", scales=list(draw=T), colorkey=F, main="India")








# map of India with states coloured with an arbitrary fake data
ind1$NAME_1 = as.factor(ind1$NAME_1)
ind1$fake.data = runif(length(ind1$NAME_1))
spplot(ind1,"NAME_1",  col.regions=rgb(0,ind1$fake.data,0), colorkey=T, main="Indian States")







and then executing these commands :
# map of West Bengal ( or any other state )
wb1 = (ind1[ind1$NAME_1=="West Bengal",])
spplot(wb1,"NAME_1", col.regions=rgb(0,0,1), main = "West Bengal, India",scales=list(draw=T), colorkey =F)


# map of Karnataka ( or any other state )
kt1 = (ind1[ind1$NAME_1=="Karnataka",])
spplot(kt1,"NAME_1", col.regions=rgb(0,1,0), main = "Karnataka, India",scales=list(draw=T), colorkey =F)



# load level 2 india data downloaded from http://gadm.org/country
load("IND_adm2.RData")

ind2=readRDS("IND_adm2.rds")


and then plot the various districts as

# plotting districts of a State, in this case West Bengal
wb2 = (ind2[ind2$NAME_1=="West Bengal",])
spplot(wb2,"NAME_1", main = "West Bengal Districts", colorkey =F)


To identify each district with a beautiful colour we can use the following commands :
# colouring the districts with rainbow of colours
wb2$NAME_2 = as.factor(wb2$NAME_2)
col = rainbow(length(levels(wb2$NAME_2)))
spplot(wb2,"NAME_2",  col.regions=col, colorkey=T)


# colouring the districts with some simulated, fake data
wb2$NAME_2 = as.factor(wb2$NAME_2)
wb2$fake.data = runif(length(wb2$NAME_1)) 
spplot(wb2,"NAME_2",  col.regions=rgb(0,wb2$fake.data, 0), colorkey=T)



# colouring the districts with range of colours
col_no = as.factor(as.numeric(cut(wb2$fake.data, c(0,0.2,0.4,0.6,0.8,1))))
levels(col_no) = c("<20%", "20-40%", "40-60%","60-80%", ">80%")
wb2$col_no = col_no
myPalette = brewer.pal(5,"Greens")
spplot(wb2, "col_no", col=grey(.9), col.regions=myPalette, main="District Wise Data")




# load level 3 india data downloaded from http://gadm.org/country
load("IND_adm3.RData")

ind3=readRDS("IND_adm3.rds")

# extracting data for West Bengal

wb3 = (ind3[ind3$NAME_1=="West Bengal",])

and then plot the subdivision or taluk level map as follows :
  
#plotting districts and sub-divisions / taluk
wb3$NAME_3 = as.factor(wb3$NAME_3)
col = rainbow(length(levels(wb3$NAME_3)))

spplot(wb3,"NAME_3", main = "Taluk, District - West Bengal", colorkey=T,col.regions=col,scales=list(draw=T))







# get map for "North 24 Parganas District"
wb3 = (ind3[ind3$NAME_1=="West Bengal",])
n24pgns3 = (wb3[wb3$NAME_2=="North 24 Parganas",])
spplot(n24pgns3,"NAME_3", colorkey =F, scales=list(draw=T), main = "24 Pgns (N) West Bengal")




# now draw the map of Basirhat subdivision
# recreate North 24 Parganas data
n24pgns3 = (wb3[wb3$NAME_2=="North 24 Parganas",])
basirhat3 = (n24pgns3[n24pgns3$NAME_3=="Basirhat",])
spplot(basirhat3,"NAME_3", colorkey =F, scales=list(draw=T), main = "Basirhat,24 Pgns (N) West Bengal")


# zoomed in data
wb2 = (ind2[ind2$NAME_1=="West Bengal",])
wb2$NAME_2 = as.factor(wb2$NAME_2)
col = rainbow(length(levels(wb2$NAME_2)))
spplot(wb2,"NAME_2",  col.regions=col,scales=list(draw=T),ylim=c(23.5,25),xlim=c(87,89), colorkey=T)





Thursday, 2 February 2017

Visualization Using Python


Anscombe’s quartet























Grouped violinplots with split violins



Add caption







Joint kernel density estimate


















Plotting a three-way ANOVA












Timeseries from DataFrame
















Scatterplot with categorical variables















Discovering structure in heatmap data



















Barplot timeseries















FacetGrid with custom projection














Tuesday, 24 January 2017

GeoMapping_States

Monday, 23 January 2017

Rounded Rectangles Chart


Document content goes here...

Document content also go here...

Cycling


Document content goes here...

Document content also go here...

Address_GoogleMap

Geomapping

Document content also go here...

GeoMapping_States1


Geomapping

Document content also go here...

Bubble Chart


Document content goes here...

Document content also go here...


GeoMapping_Cities


Geomapping

Pie Chart


Thursday, 12 January 2017

Data Visualizations in R

In this article, we will be working on basic and advanced visualizations.

The data used here is "Big Mart Data". The link for the same is given below:



### show info about the data
data=Big.Mart.Dataset
train=data

library(ggplot2) 



Basic Visualizations

1. Scatter Plot


ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point() + scale_x_continuous("Item Visibility", breaks = seq(0,0.35,0.05))+ scale_y_continuous("Item MRP", breaks = seq(0,270,by = 30))+ theme_bw() 



















ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point(aes(color = Item_Type)) + 
  scale_x_continuous("Item Visibility", breaks = seq(0,0.35,0.05))+
  scale_y_continuous("Item MRP", breaks = seq(0,270,by = 30))+
  theme_bw() + labs(title="Scatterplot")





















ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point(aes(color = Item_Type)) + 
  scale_x_continuous("Item Visibility", breaks = seq(0,0.35,0.05))+
  scale_y_continuous("Item MRP", breaks = seq(0,270,by = 30))+ 
  theme_bw() + labs(title="Scatterplot") + facet_wrap( ~ Item_Type)




2. Histogram


library(RColorBrewer)

data(VADeaths)
par(mfrow=c(2,3))
hist(VADeaths,breaks=10, col=brewer.pal(3,"Set3"),main="Set3 3 colors")
hist(VADeaths,breaks=3 ,col=brewer.pal(3,"Set2"),main="Set2 3 colors")
hist(VADeaths,breaks=7, col=brewer.pal(3,"Set1"),main="Set1 3 colors")
hist(VADeaths,,breaks= 2, col=brewer.pal(8,"Set3"),main="Set3 8 colors")
hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors")
hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8 colors")



















ggplot(train, aes(Item_MRP)) + geom_histogram(binwidth = 2)+
  scale_x_continuous("Item MRP", breaks = seq(0,270,by = 30))+
  scale_y_continuous("Count", breaks = seq(0,200,by = 20))+
  labs(title = "Histogram")


3. Bar & Stack Bar Chart


ggplot(train, aes(Outlet_Establishment_Year)) + geom_bar(fill = "red")+theme_bw()+
  scale_x_continuous("Establishment Year", breaks = seq(1985,2010)) + 
  scale_y_continuous("Count", breaks = seq(0,1500,150)) +
  coord_flip()+ labs(title = "Bar Chart") + theme_gray()





Vertical Bar Chart:


ggplot(train, aes(Item_Type, Item_Weight)) + geom_bar(stat = "identity", fill = "darkblue") + scale_x_discrete("Outlet Type")+ scale_y_continuous("Item Weight", breaks = seq(0,15000, by = 500))+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + labs(title = "Bar Chart")




Stacked Bar chart:


ggplot(train, aes(Outlet_Location_Type, fill = Outlet_Type)) + geom_bar()+
  labs(title = "Stacked Bar Chart", x = "Outlet Location Type", y = "Count of Outlets")



4. Box Plot


ggplot(train, aes(Outlet_Identifier, Item_Outlet_Sales)) + geom_boxplot(fill = "red")+
  scale_y_continuous("Item Outlet Sales", breaks= seq(0,15000, by=500))+
  labs(title = "Box Plot", x = "Outlet Identifier")



5. Area Chart


ggplot(train, aes(Item_Outlet_Sales)) + geom_area(stat = "bin", bins = 30, fill = "steelblue") + scale_x_continuous(breaks = seq(0,11000,1000))+ labs(title = "Area Chart", x = "Item Outlet Sales", y = "Count") 



Advanced Visualizations


library(hexbin)
a=hexbin(diamonds$price,diamonds$carat,xbins=40)
library(RColorBrewer)
plot(a)


















library(RColorBrewer)
rf = colorRampPalette(rev(brewer.pal(40,'Set3')))
hexbinplot(diamonds$price~diamonds$carat, data=diamonds, colramp=rf)


6. Mosaic Plot


data(HairEyeColor)
mosaicplot(HairEyeColor)

7. Heat Map


ggplot(train, aes(Outlet_Identifier, Item_Type))+
  geom_raster(aes(fill = Item_MRP))+
  labs(title ="Heat Map", x = "Outlet Identifier", y = "Item Type")+
  scale_fill_continuous(name = "Item MRP") 



8. Map Visualization 


devtools::install_github("rstudio/leaflet")

library(magrittr)
library(leaflet)
m <- leaflet() %>%
  addTiles() %>%  # Add default OpenStreetMap map tiles
  addMarkers(lng=77.2310, lat=28.6560, popup="The delicious food of chandni chowk")
m  # Print the map


9. 3D Graphs 


library(Rcmdr)
data(iris, package="datasets")
scatter3d(Petal.Width~Petal.Length+Sepal.Length|Species, data=iris, fit="linear",residuals=TRUE, parallel=FALSE, bg="black", axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE)















attach(iris)# 3d scatterplot by factor level
library(lattice)
cloud(Sepal.Length~Sepal.Width*Petal.Length|Species, main="3D Scatterplot by Species")











xyplot(Sepal.Width ~ Sepal.Length, iris, groups = iris$Species, pch= 20)
















10. Correlogram

install.packages("corrgram")
library(corrgram)


corrgram(train, order=NULL, panel=panel.shade, text.panel=panel.txt,main="Correlogram")